Puntos máximos y de inflexión de la distribución de chi-cuadrado

Estadística matemática utiliza técnicas de varias ramas de las matemáticas para demostrar definitivamente que las declaraciones sobre estadísticas son verdaderas. Veremos cómo usar el cálculo para determinar los valores mencionados anteriormente tanto del valor máximo de distribución de chi-cuadrado, que corresponde a su modo, así como encontrar los puntos de inflexión de la distribución.

Antes de hacer esto, discutiremos las características de los puntos máximos y de inflexión en general. También examinaremos un método para calcular un máximo los puntos de inflexión.

Cómo calcular un modo con cálculo

Para un conjunto discreto de datos, el modo es el valor más frecuente. En un histograma de los datos, esto estaría representado por la barra más alta. Una vez que conocemos la barra más alta, observamos el valor de datos que corresponde a la base de esta barra. Este es el modo para nuestro conjunto de datos.

La misma idea se usa al trabajar con una distribución continua. Esta vez para encontrar el modo, buscamos el pico más alto en la distribución. Para un gráfico de esta distribución, la altura del pico es un valor y. Este valor y se llama máximo para nuestro gráfico porque el valor es mayor que cualquier otro valor y. El modo es el valor a lo largo del eje horizontal que corresponde a este valor y máximo.

instagram viewer

Aunque simplemente podemos mirar un gráfico de una distribución para encontrar el modo, hay algunos problemas con este método. Nuestra precisión es tan buena como nuestra gráfica, y es probable que tengamos que estimar. Además, puede haber dificultades para graficar nuestra función.

Un método alternativo que no requiere gráficos es usar cálculo. El método que usaremos es el siguiente:

  1. Comience con la función de densidad de probabilidad F (X) para nuestra distribución.
  2. Calcular el primero y el segundo derivados de esta función: F '(X) y F ''(X)
  3. Establezca esta primera derivada igual a cero F '(X) = 0.
  4. Resolver X.
  5. Inserte los valores del paso anterior en la segunda derivada y evalúe. Si el resultado es negativo, entonces tenemos un máximo local en el valor x.
  6. Evalúa nuestra función f (X) en todos los puntos X del paso anterior
  7. Evalúe la función de densidad de probabilidad en cualquier punto final de su soporte. Entonces, si la función tiene dominio dado por el intervalo cerrado [a, b], evalúe la función en los puntos finales un y si.
  8. El valor más grande en los pasos 6 y 7 será el máximo absoluto de la función. El valor x donde se produce este máximo es el modo de distribución.

Modo de la distribución Chi-Square

Ahora pasamos por los pasos anteriores para calcular el modo de la distribución de chi-cuadrado con r grados de libertad. Comenzamos con la función de densidad de probabilidad F(X) que se muestra en la imagen de este artículo.

F (X) = K Xr / 2-1mi-x / 2

aquí K es una constante que involucra el función gamma y un poder de 2. No necesitamos conocer los detalles (sin embargo, podemos referirnos a la fórmula en la imagen para estos).

La primera derivada de esta función se da usando el regla del producto así como el cadena de reglas:

F '( X ) = K (r / 2 - 1)Xr / 2-2mi-x / 2 - (K / 2) Xr / 2-1mi-x / 2

Establecemos esta derivada igual a cero, y factorizamos la expresión en el lado derecho:

0 = K xr / 2-1mi-x / 2 [(r / 2 - 1)X-1- 1/2]

Ya que la constante K el funcion exponencial y Xr / 2-1 son todos distintos de cero, podemos dividir ambos lados de la ecuación por estas expresiones. Entonces tenemos:

0 = (r / 2 - 1)X-1- 1/2

Multiplica ambos lados de la ecuación por 2:

0 = (r - 2)X-1- 1

Así 1 = (r - 2)X-1y concluimos teniendo x = r - 2. Este es el punto a lo largo del eje horizontal donde se produce el modo. Indica el X valor del pico de nuestra distribución chi-cuadrado.

Cómo encontrar un punto de inflexión con cálculo

Otra característica de una curva trata de la forma en que se curva. Las partes de una curva pueden ser cóncavas, como una U mayúscula. Las curvas también pueden ser cóncavas y tener forma de intersección símbolo ∩. Cuando la curva cambia de cóncava a cóncava hacia arriba, o viceversa, tenemos un punto de inflexión.

La segunda derivada de una función detecta la concavidad de la gráfica de la función. Si la segunda derivada es positiva, entonces la curva es cóncava hacia arriba. Si la segunda derivada es negativa, entonces la curva es cóncava hacia abajo. Cuando la segunda derivada es igual a cero y la gráfica de la función cambia la concavidad, tenemos un punto de inflexión.

Para encontrar los puntos de inflexión de un gráfico nosotros:

  1. Calcule la segunda derivada de nuestra función. F ''(X).
  2. Establezca esta segunda derivada igual a cero.
  3. Resuelve la ecuación del paso anterior para X.

Puntos de inflexión para la distribución de chi-cuadrado

Ahora vemos cómo trabajar a través de los pasos anteriores para la distribución de chi-cuadrado. Comenzamos diferenciando. Del trabajo anterior, vimos que la primera derivada para nuestra función es:

F '(X) = K (r / 2 - 1) Xr / 2-2mi-x / 2 - (K / 2) Xr / 2-1mi-x / 2

Nos diferenciamos nuevamente, usando la regla del producto dos veces. Tenemos:

F ''( X ) = K (r / 2 - 1) (r / 2 - 2)Xr / 2-3mi-x / 2 - (K / 2) (r / 2 - 1)Xr / 2-2mi-x / 2 + (K / 4) Xr / 2-1mi-x / 2 - (K / 2) (r / 2 - 1) Xr / 2-2mi-x / 2

Ponemos esto a cero y dividimos ambos lados entre Ke-x / 2

0= (r / 2 - 1) (r / 2 - 2)Xr / 2-3- (1/2) (r / 2 - 1)Xr / 2-2+ (1/ 4) Xr / 2-1- (1/ 2)(r/2 - 1) Xr / 2-2

Al combinar términos similares tenemos:

(r / 2 - 1) (r / 2 - 2)Xr / 2-3- (r / 2 - 1)Xr / 2-2+ (1/ 4) Xr / 2-1

Multiplica ambos lados por 4X3 - r / 2, esto nos da:

0 = (r - 2) (r - 4) - (2r - 4)X+ X2.

La fórmula cuadrática ahora se puede usar para resolver X.

X = [(2r - 4) +/- [(2r - 4)2 - 4 (r - 2) (r - 4)]1/2]/2

Expandimos los términos que se llevan a la potencia 1/2 y vemos lo siguiente:

(4r2 -16r + 16) - 4 (r2 -6r + 8) = 8r - 16 = 4 (2r - 4)

Esto significa que:

X = [(2r - 4) +/- [(4 (2r - 4)]1/2] / 2 = (r - 2) +/- [2r - 4]1/2

De esto vemos que hay dos puntos de inflexión. Además, estos puntos son simétricos con respecto al modo de distribución ya que (r - 2) está a medio camino entre los dos puntos de inflexión.

Conclusión

Vemos cómo ambas características están relacionadas con el número de grados de libertad. Podemos usar esta información para ayudar en el bosquejo de una distribución de chi-cuadrado. También podemos comparar esta distribución con otras, como la distribución normal. Podemos ver que los puntos de inflexión para una distribución de chi-cuadrado ocurren en lugares diferentes a los puntos de inflexión para la distribución normal.

instagram story viewer