¿Qué es una muestra de cuota en sociología?

Una muestra de cuota es un tipo de muestra no probabilística en el que el investigador selecciona personas de acuerdo con algún estándar fijo. Es decir, las unidades se seleccionan en una muestra sobre la base de características preespecificadas para que el La muestra total tiene la misma distribución de características que se supone existe en la población estudió.

Por ejemplo, si usted es un investigador que realiza una muestra de cuota nacional, es posible que necesite saber qué proporción del la población es masculina y qué proporción es femenina, así como qué proporciones de cada género caen en diferentes edades categorías, categorías de raza y etnia, y nivel de educación, entre otros. Si recolectó una muestra con las mismas proporciones que estas categorías dentro de la población nacional, tendría una muestra de cuota.

Cómo hacer una muestra de cuota

En el muestreo de cuotas, el investigador tiene como objetivo representar las principales características de la población mediante el muestreo de una cantidad proporcional de cada uno. Por ejemplo, si desea obtener una muestra de cuota proporcional de 100 personas

instagram viewer
basado en el género, necesitaría comenzar con una comprensión de la relación hombre / mujer en la población más grande. Si descubrió que la población más grande incluye 40 por ciento de mujeres y 60 por ciento de hombres, necesitaría una muestra de 40 mujeres y 60 hombres, para un total de 100 encuestados. Comenzaría a tomar muestras y continuaría hasta que su muestra alcanzara esas proporciones y luego se detendría. Si ya hubiera incluido 40 mujeres en su estudio, pero no 60 hombres, continuaría tomando muestras de hombres y descarte a las mujeres encuestadas adicionales porque ya ha cumplido su cuota para esa categoría de Participantes.

Ventajas

El muestreo de cuotas es ventajoso porque puede ser bastante rápido y fácil ensamblar una muestra de cuotas localmente, lo que significa que tiene el beneficio de ahorrar tiempo dentro del proceso de investigación. Debido a esto, también se puede obtener una muestra de cuota con un presupuesto bajo. Estas características hacen que el muestreo de cuotas sea una táctica útil para tema de investigación.

Inconvenientes

El muestreo de cuotas tiene varios inconvenientes. Primero, el marco de cuota, o las proporciones en cada categoría, deben ser precisas. Esto a menudo es difícil porque puede ser difícil encontrar información actualizada sobre ciertos temas. Por ejemplo, Censo de EE. UU. los datos a menudo no se publican hasta mucho después de que se recopilaron los datos, lo que hace posible que algunas cosas hayan cambiado las proporciones entre la recopilación y la publicación de datos.

En segundo lugar, la selección de elementos de muestra dentro de una categoría dada del marco de cuota puede estar sesgada aunque la proporción de la población se calcule con precisión. Por ejemplo, si un investigador se dispuso a entrevistar a cinco personas que conocieron un conjunto complejo de características, él o ella podrían introducir sesgos en la muestra al evitar o incluir a ciertas personas o situaciones. Si el entrevistador que estudia a una población local evitara ir a hogares que parecían particularmente descuidados o visitó solo hogares con piscinas, por ejemplo, su muestra estaría sesgada.

Un ejemplo del proceso de muestreo de cuotas

Digamos que queremos entender más sobre los objetivos profesionales de los estudiantes de la Universidad X. En particular, queremos ver las diferencias en las metas profesionales entre los estudiantes de primer año, estudiantes de segundo año, juniors y seniors para examinar cómo las metas profesionales pueden cambiar en el transcurso de un educación universitaria.

La Universidad X tiene 20,000 estudiantes, que es nuestra población. Luego, necesitamos descubrir cómo se distribuye nuestra población de 20,000 estudiantes entre las cuatro categorías de clase en las que estamos interesados. Si descubrimos que hay 6,000 estudiantes de primer año (30 por ciento), 5,000 estudiantes de segundo año (25 por ciento), 5,000 junior estudiantes (25 por ciento) y 4,000 estudiantes de último año (20 por ciento), esto significa que nuestra muestra también debe cumplir con estos dimensiones. Si queremos muestrear 1,000 estudiantes, esto significa que debemos encuestar a 300 estudiantes de primer año, 250 estudiantes de segundo año, 250 estudiantes de tercer año y 200 estudiantes de último año. Luego continuaríamos seleccionando al azar a estos estudiantes para nuestra muestra final.

instagram story viewer