Historia del termómetro y Lord Kelvin

Lord Kelvin inventó la escala Kelvin en 1848 utilizada en termómetros. La escala Kelvin mide los extremos extremos de frío y calor. Kelvin desarrolló la idea de temperatura absoluta, lo que se llama "Segunda ley de la termodinámica", y desarrolló la teoría dinámica del calor.

En el Siglo 19, los científicos estaban investigando cuál era la temperatura más baja posible. La escala Kelvin usa las mismas unidades que la escala Celcius, pero comienza en CERO ABSOLUTO, el temperatura en el que todo, incluido el aire, se congela. El cero absoluto es O K, que es - 273 ° C grados Celsius.

Lord Kelvin - Biografía

Sir William Thomson, barón Kelvin de Largs, Lord Kelvin de Escocia (1824-1907) estudió en Cambridge University, fue campeón de remo y luego se convirtió en profesor de filosofía natural en la Universidad de Glasgow Entre sus otros logros estuvo el descubrimiento en 1852 del "Efecto Joule-Thomson" de gases y su trabajo en el primer transatlántico telégrafo cable (por el cual fue nombrado caballero), y su invención del galvanómetro espejo utilizado en la señalización por cable, el registrador de sifón, el predictor mecánico de marea, una brújula mejorada de la nave.

instagram viewer

Extractos de: Revista filosófica Octubre de 1848 Cambridge University Press, 1882

... La propiedad característica de la escala que ahora propongo es que todos los grados tienen el mismo valor; es decir, que una unidad de calor que desciende de un cuerpo A a la temperatura T ° de esta escala, a un cuerpo B a la temperatura (T-1) °, produciría el mismo efecto mecánico, cualquiera que sea el número T. Esto puede llamarse justamente una escala absoluta ya que su característica es bastante independiente de las propiedades físicas de cualquier sustancia específica.

Para comparar esta escala con la del termómetro de aire, se deben conocer los valores (de acuerdo con el principio de estimación establecido anteriormente) de los grados del termómetro de aire. Ahora una expresión, obtenida por Carnot de la consideración de su máquina de vapor ideal, nos permite calcular estos valores cuando el calor latente de un volumen dado y la presión de vapor saturado a cualquier temperatura son experimentalmente determinado. La determinación de estos elementos es el objeto principal del gran trabajo de Regnault, ya mencionado, pero, en la actualidad, sus investigaciones no están completas. En la primera parte, que solo se ha publicado hasta ahora, los calores latentes de un peso dado y las presiones de vapor saturado a todas las temperaturas entre 0 ° y 230 ° (Cent. del termómetro de aire), se han verificado; pero sería necesario además de conocer las densidades de vapor saturado a diferentes temperaturas, para permitirnos determinar el calor latente de un volumen dado a cualquier temperatura. METRO. Regnault anuncia su intención de instituir investigaciones para este objeto; pero hasta que se den a conocer los resultados, no tenemos forma de completar los datos necesarios para el problema actual, excepto estimando la densidad del vapor saturado a cualquier temperatura (el presión correspondiente conocida por las investigaciones de Regnault ya publicadas) de acuerdo con las leyes aproximadas de compresibilidad y expansión (las leyes de Mariotte y Gay-Lussac, o Boyle y Dalton). Dentro de los límites de la temperatura natural en climas ordinarios, la densidad del vapor saturado es realmente encontrado por Regnault (Études Hydrométriques en los Annales de Chimie) para verificar muy de cerca estos leyes; y tenemos razones para creer de los experimentos realizados por Gay-Lussac y otros, que a temperaturas tan altas como 100 ° no puede haber una desviación considerable; pero nuestra estimación de la densidad del vapor saturado, fundada en estas leyes, puede ser muy errónea a temperaturas tan altas a 230 °. Por lo tanto, no se puede hacer un cálculo completamente satisfactorio de la escala propuesta hasta después de que se hayan obtenido los datos experimentales adicionales; pero con los datos que poseemos, podemos hacer una comparación aproximada de la nueva escala con la del termómetro de aire, que al menos entre 0 ° y 100 ° será tolerablemente satisfactoria.

El trabajo de realizar los cálculos necesarios para efectuar una comparación de la escala propuesta con la del termómetro de aire, entre límites de 0 ° y 230 ° de este último, ha sido amablemente emprendido por el Sr. William Steele, recientemente del Glasgow College, ahora del St. Peter's College, Cambridge Sus resultados en formas tabuladas se presentaron ante la Sociedad, con un diagrama, en el que la comparación entre las dos escalas se representa gráficamente. En la primera tabla, se muestran las cantidades de efecto mecánico debido al descenso de una unidad de calor a través de los grados sucesivos del termómetro de aire. La unidad de calor adoptada es la cantidad necesaria para elevar la temperatura de un kilogramo de agua de 0 ° a 1 ° del termómetro de aire; y la unidad de efecto mecánico es un metro-kilogramo; es decir, un kilogramo elevó un metro de altura.

En la segunda tabla, se muestran las temperaturas según la escala propuesta, que corresponden a los diferentes grados del termómetro de aire de 0 ° a 230 °. Los puntos arbitrarios que coinciden en las dos escalas son 0 ° y 100 °.

Si sumamos los primeros cien números dados en la primera tabla, encontramos 135.7 para la cantidad de trabajo debido a una unidad de calor que desciende de un cuerpo A a 100 ° a B a 0 °. Ahora, 79 unidades de calor de este tipo, según el Dr. Black (su resultado es muy ligeramente corregido por Regnault), derretiría un kilogramo de hielo. Por lo tanto, si el calor necesario para derretir una libra de hielo se toma ahora como unidad, y si se toma una libra-metro como la unidad de efecto mecánico, la cantidad de trabajo que se debe obtener por el descenso de una unidad de calor de 100 ° a 0 ° es 79x135.7, o 10,700 casi. Esto es lo mismo que 35,100 libras-pie, que es un poco más que el trabajo de un motor de un caballo de fuerza (33,000 libras-pie) en un minuto; y en consecuencia, si tuviéramos una máquina de vapor que funcionara con una economía perfecta a una potencia de un caballo, la caldera estaría en temperatura 100 °, y el condensador mantenido a 0 ° por un suministro constante de hielo, en lugar de menos de una libra de hielo se derretiría en un minuto.

instagram story viewer