De todos los grupos de elementos, los metales de transición pueden ser los más confusos de identificar porque hay diferentes definiciones de qué elementos deben incluirse. Conforme a la IUPAC, un metal de transición es cualquier elemento con una subcapa de electrones d parcialmente llena. Esto describe los grupos 3 a 12 en la tabla periódica, aunque los elementos del bloque f (lantánidos y actínidos, debajo del cuerpo principal de la tabla periódica) también son metales de transición. Los elementos del bloque d se denominan metales de transición, mientras que los lantánidos y los actínidos se denominan "metales de transición internos".
Los elementos se denominan metales de "transición" porque la química inglesa Charles Bury utilizó el término en 1921 para describir la serie de elementos de transición, que se refería a la transición de una capa interna de electrones con un grupo estable de 8 electrones a uno con 18 electrones o la transición de 18 electrones a 32.
Otra forma de verlo es que los metales de transición incluyen los elementos del bloque d, y muchas personas consideran que los elementos del bloque f son un subconjunto especial de metales de transición. Si bien el aluminio, el galio, el indio, el estaño, el talio, el plomo, el bismuto, el nihonio, el flerovio, el moscovio y el hepmorio son metales, estos "metales básicos" tienen
carácter menos metálico que otros metales en la tabla periódica y tienden a no ser considerados como metales de transición.Porque poseen las propiedades de rieles, los elementos de transición también son conocidos como los metales de transición. Estos elementos son muy duros, con altos puntos de fusión y puntos de ebullición. Moviéndose de izquierda a derecha a través de la tabla periódica, los cinco re los orbitales se vuelven más llenos. los re los electrones están ligados libremente, lo que contribuye a la alta conductividad eléctrica y maleabilidad de los elementos de transición. Los elementos de transición tienen bajas energías de ionización. Exhiben una amplia gama de estados de oxidación o formas cargadas positivamente. Los estados de oxidación positiva permiten que los elementos de transición formen muchos compuestos iónicos y parcialmente iónicos diferentes. La formación de complejos provoca la re Los orbitales se dividen en dos subniveles de energía, lo que permite que muchos de los complejos absorban frecuencias específicas de luz. Por lo tanto, los complejos forman soluciones y compuestos coloreados característicos. Las reacciones de complejación a veces mejoran la solubilidad relativamente baja de algunos compuestos.