¿Qué es la intersección de dos conjuntos?

Cuando se trata de teoría de conjuntos, hay una serie de operaciones para hacer nuevos conjuntos de los antiguos. Una de las operaciones de conjuntos más comunes se llama intersección. En pocas palabras, la intersección de dos conjuntos UN y si es el conjunto de todos los elementos que ambos UN y si tener en común.

Veremos detalles sobre la intersección en la teoría de conjuntos. Como veremos, la palabra clave aquí es la palabra "y".

Un ejemplo

Para un ejemplo de cómo la intersección de dos conjuntos forma un nuevo set, consideremos los conjuntos UN = {1, 2, 3, 4, 5} y si = {3, 4, 5, 6, 7, 8}. Para encontrar la intersección de estos dos conjuntos, necesitamos descubrir qué elementos tienen en común. Los números 3, 4, 5 son elementos de ambos conjuntos, por lo tanto, las intersecciones de UN y si es {3. 4. 5].

Notación para intersección

Además de comprender los conceptos relativos a las operaciones de teoría de conjuntos, es importante poder leer los símbolos utilizados para denotar estas operaciones. El símbolo de intersección a veces se reemplaza por la palabra "y" entre dos conjuntos. Esta palabra sugiere la notación más compacta para una intersección que se usa típicamente.

instagram viewer

El símbolo utilizado para la intersección de los dos conjuntos. UN y si es dado por UNsi. Una forma de recordar que este símbolo ∩ se refiere a la intersección es notar su parecido con una A mayúscula, que es la abreviatura de la palabra "y".

Para ver esta notación en acción, consulte el ejemplo anterior. Aquí tuvimos los sets UN = {1, 2, 3, 4, 5} y si = {3, 4, 5, 6, 7, 8}. Entonces escribiríamos la ecuación establecida UNsi = {3, 4, 5}.

Intersección con el conjunto vacío

Una identidad básica que involucra la intersección nos muestra lo que sucede cuando tomamos la intersección de cualquier conjunto con el conjunto vacío, denotado por # 8709. El conjunto vacío es el conjunto sin elementos. Si no hay elementos en al menos uno de los conjuntos de los que estamos tratando de encontrar la intersección, entonces los dos conjuntos no tienen elementos en común. En otras palabras, la intersección de cualquier conjunto con el conjunto vacio Nos dará el conjunto vacío.

Esta identidad se vuelve aún más compacta con el uso de nuestra notación. Tenemos la identidad: UN ∩ ∅ = ∅.

Intersección con el conjunto universal

Para el otro extremo, ¿qué sucede cuando examinamos la intersección de un conjunto con el conjunto universal? Similar a cómo la palabra universo se usa en astronomía para significar todo, el conjunto universal contiene cada elemento. De ello se deduce que cada elemento de nuestro conjunto es también un elemento del conjunto universal. Por lo tanto, la intersección de cualquier conjunto con el conjunto universal es el conjunto con el que comenzamos.

Nuevamente, nuestra notación viene al rescate para expresar esta identidad de manera más sucinta. Para cualquier conjunto UN y el conjunto universal U, UNU = UN.

Otras identidades que involucran la intersección

Hay muchas más ecuaciones establecidas que implican el uso de la operación de intersección. Por supuesto, siempre es bueno práctica usando el lenguaje de la teoría de conjuntos. Para todos los conjuntos UNy si y re tenemos:

  • Propiedad reflexiva: UNUN =UN
  • Propiedad conmutativa: UNsi = siUN
  • Propiedad asociativa: (UNsi) ∩ re =UN ∩ (sire)
  • Propiedad distributiva: (UNsi) ∩ re = (UNre)∪ (sire)
  • Ley I de DeMorgan: (UNsi)C = UNCsiC
  • Ley II de DeMorgan: (UNsi)C = UNCsiC